Activities/ Resources for Outcome #3

Fractions: Notes and Discovery

Writing Fractions in Simplest Form

- <u>Definition:</u> A quotient of two numbers is called a **fraction**. In the fraction, the top number is called the **numerator** and the bottom number is called the **denominator**.
- Ex: $\frac{3}{4}$ is a fraction where 3 is the numerator, 4 is the denominator

To simplify fractions, we can **factor** the denominator. **Factoring** means to write a number as a product.

- Ex: $2 \cdot 5 = 10$ OR $1 \cdot 10 = 10$ \uparrow \uparrow factors product
- <u>Definition:</u> A fraction is said to be **simplified** or in **lowest terms** when the numerator and denominator have no common factors other than 1.

To make it easier to simplify a fraction, the numerator and denominator should be written as products of **prime numbers**.

<u>Definition:</u> A **prime number** is a natural number, other than 1, whose only factors are 1 and itself.

Ex: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, etc

<u>Definition:</u> A **composite number** is a natural number that is not prime. Every composite number can be written as a unique product of primes.

Ex: $24 = 4 \cdot 6$ \downarrow $= 2 \cdot 2 \cdot 2 \cdot 3$

Write 60 as a product of primes:

60 =

Fundamental Principle of Fractions:If $\frac{a}{b}$ is a fraction and c is a nonzero realnumber, then $\frac{a \cdot c}{b \cdot c} = \frac{a}{b}$.

Why is this true? (Try to think of an example or two.)

Writing fractions in lowest terms:

Ex: a.) $\frac{30}{36} = \frac{2 \cdot 3 \cdot 5}{2 \cdot 2 \cdot 3 \cdot 3} = \frac{5}{6}$ b.) $\frac{13}{24} = \frac{13}{2 \cdot 2 \cdot 2 \cdot 3} = \frac{13}{24}$

Write the following fraction in lowest terms:

Ex: $\frac{20}{35}$

Multiplying and Dividing Fractions

<u>Multiplying Fractions:</u> $\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$ if $b \neq 0$ and $d \neq 0$

Multiplying fractions and writing in lowest terms:

Ex: a.) $\frac{3}{4} \cdot \frac{2}{11} = \frac{3 \cdot 2}{4 \cdot 11} = \frac{3 \cdot 2}{2 \cdot 2 \cdot 11} = \frac{3}{22}$ b.) $\frac{5}{8} \cdot \frac{4}{7} = \frac{5 \cdot 4}{8 \cdot 7} = \frac{5 \cdot 2 \cdot 2}{2 \cdot 2 \cdot 2 \cdot 7} = \frac{5}{14}$

Multiply the following fractions and write the product in lowest terms:

Ex: $\frac{2}{7} \cdot \frac{3}{10} =$

<u>Definition</u>: Two fractions are **reciprocals** of each other if their product equals 1. Ex: $\frac{3}{4}$ and $\frac{4}{3}$ are reciprocals because $\frac{3}{4} \cdot \frac{4}{3} = 1$

<u>Dividing Fractions:</u> $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}$ if $b \neq 0$, $c \neq 0$, and $d \neq 0$

Dividing fractions and writing in lowest terms:

Ex: a.)
$$\frac{2}{5} \div \frac{5}{9} = \frac{2}{5} \cdot \frac{9}{5} = \frac{2 \cdot 9}{5 \cdot 5} = \frac{18}{25}$$

b.) $\frac{3}{4} \div \frac{7}{12} = \frac{3}{4} \cdot \frac{12}{7} = \frac{3 \cdot 2 \cdot 2 \cdot 3}{2 \cdot 2 \cdot 7} = \frac{9}{7} = 1\frac{2}{7}$

Divide the following fractions and write the quotient in lowest terms:

Ex: a.) $\frac{2}{9} \div \frac{3}{4} =$

b.)
$$\frac{5}{8} \div 10 =$$

Adding and Subtracting Fractions

Adding and Subtracting Fractions with the Same Denominator:

$$\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b} \qquad \text{if } b \neq 0$$
$$\frac{a}{b} - \frac{c}{b} = \frac{a-c}{b} \qquad \text{if } b \neq 0$$

Adding and subtracting fractions and writing in lowest terms:

Ex: a.) $\frac{1}{5} + \frac{3}{5} = \frac{1+3}{5} = \frac{4}{5}$ b.) $\frac{7}{8} - \frac{5}{8} = \frac{7-5}{8} = \frac{2}{8} = \frac{2}{2 \cdot 2 \cdot 2} = \frac{1}{4}$ Add or subtract the following fractions and write the answer in lowest terms:

Ex: a.) $\frac{2}{11} + \frac{5}{11} =$ b.) $\frac{13}{10} - \frac{3}{10} =$

Adding and Subtracting Fractions with Different Denominators:

In order to add or subtract fractions with different denominators, you must find the **least common denominator (LCD)** amongst the fractions. Once the LCD is found, write each fraction as an **equivalent fraction** with the LCD as the new denominator.

Ex: a.)
$$\frac{1}{6} + \frac{2}{9} =$$

Since 6 and 9 are obviously not the same, you must find their LCD. What is the smallest multiple of 6 AND 9?

[Hint: It will be the first multiple of the larger number (9) that is a multiple of the smaller number (6).]

Multiples of 9: 9, 18, 27, 36, ...

18 is the first number that is also a multiple of 6 so 18 is the LCD.

Now, change each fraction into an equivalent fraction with 18 as the denominator...

What number multiplied by 6 will give you 18? 3!

$$\frac{1}{6}\cdot\frac{3}{3}=\frac{3}{18}$$

What number multiplied by 9 will give you 18? 2!

 $\frac{2}{9} \cdot \frac{2}{2} = \frac{4}{18}$

Now you are ready to add the two fractions together.

$$\frac{1}{6} + \frac{2}{9} = \frac{3}{18} + \frac{4}{18} = \frac{7}{18}$$

b.)
$$4\frac{2}{3} - 2\frac{5}{6} = \frac{14}{3} - \frac{17}{6} = \frac{28}{6} - \frac{17}{6} = \frac{11}{6} = 1\frac{5}{6}$$

Add or subtract the following fractions and write the difference in lowest terms:

Ex: a.)
$$\frac{3}{8} + \frac{1}{20} =$$

b.)
$$18\frac{1}{4} - 6\frac{2}{3} =$$

Add.
1)
$${}^{16}/_{19} + {}^{19}/_{45}$$

2) ${}^{1}/_{1} + {}^{0}/_{39}$
3) ${}^{13}/_{49} + {}^{9}/_{30}$
7) ${}^{7}/_{9} + {}^{19}/_{32}$
8) ${}^{4}/_{16} + {}^{44}/_{48}$
9) ${}^{29}/_{37} + {}^{1}/_{16}$

4)
$${}^{37}/_{42} + {}^{49}/_{49}$$
 10) ${}^{28}/_{47} + {}^{5}/_5$

5) ${}^{25}/_{39} + {}^{9}/_{40}$

6) ${}^{3}/_{21} + {}^{8}/_{43}$

Subtract.

1)
$${}^{3}/_{32} - {}^{0}/_{27}$$

7) ${}^{16}/_{33} - {}^{3}/_{38}$

2) ${}^{21}/_{46} - {}^{43}/_{47}$ 8) ${}^{29}/_{46} - {}^{4}/_{16}$

3)
$${}^{24}/_{46} - {}^{15}/_{22}$$

9) ${}^{12}/_{40} - {}^{13}/_{25}$

4)
$${}^{22}/_{45} - {}^{11}/_{38}$$
 10) ${}^{36}/_{38} - {}^{17}/_{39}$

5)
$${}^{26}I_{44} - {}^{32}I_{37}$$

6) ${}^{21}/_{30} - {}^{14}/_{46}$

Multiply.

- 1) ${}^{9}/_{41} \times {}^{20}/_{24}$ 7) ${}^{8}/_{24} \times {}^{19}/_{38}$
- 2) ${}^{1}/_{30} \times {}^{26}/_{46}$ 8) ${}^{2}/_{3} \times {}^{9}/_{17}$

3) ${}^{22}I_{46} \times {}^{27}I_{38}$ 9) ${}^{23}I_{41} \times {}^{7}I_{29}$

- 4) ${}^{3}/_{9} \times {}^{13}/_{26}$ 10) ${}^{16}/_{39} \times {}^{1}/_{45}$
- 5) ²³/₃₃ × ¹¹/₁₆

6) ²⁵/₃₄ × ⁸/₁₂

Divide.

1)
$${}^{0}/_{21} \div {}^{12}/_{22}$$
 7) ${}^{13}/_{43} \div {}^{42}/_{48}$

2)
$${}^{21}I_{34} \div {}^{24}I_{27}$$
 8) ${}^{4}I_{42} \div {}^{22}I_{37}$

3)
$${}^{20}/_{23} \div {}^{22}/_{48}$$
 9) ${}^{2}/_{13} \div {}^{40}/_{46}$

4)
$${}^{23}/_{45} \div {}^{10}/_{45}$$
 10) ${}^{30}/_{47} \div {}^{5}/_{49}$

5) ${}^{35}\!/_{44} \div {}^{30}\!/_{36}$

6)
$${}^{24}/_{45} \div {}^{15}/_{39}$$