

1

READING!!!

- They will do almost anything to avoid it.
- Don't really know why this is. Common speculation:
- Reduced attention span (perhaps as a result of videophilia)
- Poor preparation in earlier education
- Laziness
- In STEM disciplines, some scientific jargon is simply hard to read for anyone
- Reading comprehension has of course a huge, possibly primary impact on students' comprehension and their success in school and life.

3

Other factors that led me to try this experiment: Free Textbook

- I had decided to use a free text
- Developed by Rice University

Funded by several major philanthropic foundations

- However, the book made little attempt to reduce scientific jargon or simplify language, and was fairly densely written.

4

Other factors that led me to try this experiment:
"Sage on the Stage"

- I was tired of the standard "sage on the stage" format of a professor lecturing using PowerPoint
. Thought students might be a little tired as well!
- Also, when I began the 1 st class no prepared slide presentations were offered by
the publisher the publisher

5

7

Theoretical Support for the Read Aloud-Think Aloud Approach

- Vygotsky's Developmental Theory
- Zone of Proximal Development
- Scaffolding

Zone of Proximal Development (ZPD)

6

Theoretical Support for the Read Aloud-Think Aloud Approach

- Three Key Elements of Scaffolding ${ }^{2}$
- Social Interaction
- Visual Representations
- Written or Spoken Prompts

2Lin, T., Hsu, Y., Lin, S., Changlai, M. Yang, K., \& La
T. (2012). A review of empirical evidence on
T. (2012). A reviewo f empirical evidence on
scaffolding for science education International

Journal of science and Mathematics Education,
journa of scle

8

Best with small classes

- I also tried using the technique with one of my sections of Intro Bio non-major classes, Bio 114
- The class had 32 students, rather than the 8 - 14 in the major classes
- This proved to be too many: it took too long to go through one turn for the class, and I lost student focus and attention
- My own experience was that the technique worked better with class size <15

9

Classes

- Three classes were involved in this project:

Biology 122 (Organismal Biology II) łaught Fall 2015 (N
$=8$ students)
Biology 119 (Environmental Biology) taught Spring
2016 ($\mathrm{N}=14$ students)
Biology 122 (Organismal Biology II) taught Fall 2016 (N

- There were a total of 34 students in these 3 classes

10

Student Buy-In

- At the beginning of each class, I explained what I wanted to do
- Student objections were basically 2 themes:
- Reading aloud in class is baby stuff
- Reading aloud is not my learning style
- It was put to a vote, \& all 3 classes voted to give it a 2 -week trial
- After 2 weeks all 3 classes voted to keep going

Let's Give It A Try!

- We'll now point to two handouts:
- A somewhat difficult peerreviewed scientific article on rapid evolution
- We'll read the first page or two using RA-TA
- (click HERE for paper)
- The original RA-TA paper for later reference - (click HERE for paper)

13

14

Results

15

Student Comments

- No longer thought reading aloud was "baby stuff"
- However, those who thought reading aloud was not their learning style did not change their minds
- Concerning [5. I prefer a class conducted this way over a class with lecture and powerpoints. 3.35, $P=0.04]$
- Students preferred STEM classes taught using reading aloud, but not other classes
- This makes sense, considering STEM classes have much more jargon

Conclusions

- Students very strongly thought that reading aloud in biology class helped them:
- Read the text more
- Understand the text more
- Thought the instructor elaborating was useful
- Understand other texts more
- And to a lesser extent:
- Thought other classes should be conducted this way, but only STEM classes
- This technique works better with smaller classes, <about 15

17
18

If you would like to try this technique we'd be happy to help!
opergams@ccc.edu
cjakemat@purdue.edu
Imohanty@ccc.edu

The authors would also like to thank the 34 brave students!

19

