1.4 Periodic Waves

- Often have situations where wave repeats at regular intervals
- Electromagnetic wave in optical fibre
- Sound from a guitar string.
- These regularly repeating waves are known as periodic waves.
- Can characterize periodic waves either by the length scale, wavelength, or the time scale, period, at which they repeat.

Periodic wave in spatial domain - length scale is wavelength Given symbol \square

For red light (HeNe laser) $\quad=632.8 \mathrm{~nm}$.
For middle C on a piano $\square=1.3 \mathrm{~m}$.

Periodic wave in time domain - time scale is period

More often than not we refer to a periodic wave in terms of the number of times the wave repeats in 1 second.
This is the frequency, $f . f=1$ /period so $f=1 / T$.

Wave speed for period waves

- Find that the wavelength, period and wave speed are related by the following

$$
v=\frac{\square}{T}
$$

- This can be written as

$$
v=f \square
$$

- For green light, $\square=500 \mathrm{~nm}, v=3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}, f=6 \times 10^{14} \mathrm{~Hz}$.
- For middle $C, \square=1.3, v=340 \mathrm{~m} \mathrm{~s}^{-1}, f=262 \mathrm{~Hz}$.

1.5 Sine Waves and Periodic Waves

- We can write the wave function for an arbitrary disturbance as

$$
y(x, t)=f(x-v t)
$$

with $f()$ describing an arbitrary function.

- For periodic waves we can use \sin cos to give functionality to the wave.
- Why sin/cos?
- They are periodic in 2π.
- They represent a pure colour or pure tone.
- Complex waves can be made up from the addition of \sin cos waves - Fourier theory.

1.5 Sine Waves and Periodic Waves

- For a periodic wave the wave function is

$$
y(x, t)=A \sin \frac{\square}{\square} \square(x \square v t)+\frac{[}{E}
$$

- The term $2 \pi / \square$ scales the wave to the natural period of the sin function.
- The term A gives the amplitude of the wave which is the maximum displacement of the wave.

1.5 Sine Waves and Periodic Waves

- A more elegant way of writing the wave function is

$$
y(x, t)=A \sin (k x \square \square t+\square)
$$

- The phase of the wave is $k x-w t+\square$.
- THE PHASE IS ALWAYS MEASURED IN RADIANS.
- The term $k=2 \pi / \square$ is called the wave number.
- The term $\square=2 \pi v / \square \equiv 2 \pi f$ and is the angular frequency.
- The term \square is the initial phase of the wave.

1.5 Sine Waves and Periodic Waves

- This representation of the wave function

$$
y(x, t)=A \sin (k x \square \square t+\square)
$$

- Is called the \square - k notation.
- The wave speed is given by

$$
v=\frac{\square}{k} \equiv \frac{2 \square f}{\frac{2 \square}{\square}} \equiv \square f
$$

1.5 Sine Waves and Periodic Waves

- The wave function for a wave is given by

$$
y(x, t)=0.02 \sin (0.4 x \square 50 t+0.8) m
$$

- Find (a) the amplitude, (b) the wavelength, (c) the period, (d) the initial phase and (e) the wave speed.
- To start to address this problem compare the given wave function with the algebraic version.

$$
y(x, t)=A \sin (k x \square \square t+\square)
$$

1.5 Sine Waves and Periodic Waves

$$
\begin{gathered}
y(x, t)=0.02 \sin (0.4 x \square 50 t+0.8) m \\
y(x, t)=A \sin (k x \square \square t+\square)
\end{gathered}
$$

(a) Amplitude $A=0.02 \mathrm{~m}$
(b) Wave number $\mathrm{k}=0.4 \mathrm{rad} \mathrm{m}^{-1}$. As $\mathrm{k}=2 \pi / \square$ then $\mathrm{\square}=5 \pi \mathrm{~m}$
(c) Angular frequency $\square=50 \mathrm{rad} \mathrm{s}^{-1}$. As $\square=2 \pi f$ and $f=1 / \mathrm{T}$ then $T=2 \pi / w$. Hence $T=\pi / 25 \mathrm{~s}$.
(d) Initial phase $]=0.8 \mathrm{rad}$.
(e) Wave speed $v=\square / k=50 \mathrm{rad} \mathrm{s}^{-1} / 0.4 \mathrm{rad} \mathrm{m}^{-1}=125 \mathrm{~m} \mathrm{~s}^{-1}$

1.6 The Phase of a Periodic Wave

- The term $k x-\square t+\square$ gives the phase of the wave.
- The phase can be understood using circular motion with the amplitude of the wave defining the radius of the circle.
- The radius will rotate counterclockwise as it traces out the circle.

If we let $k x-\square t+\square$ be a single variable \square the wave function can be written as $y(x, t)=A \sin (\square)$. As \square advances then the displacement from the x or t axis changes.

$$
\begin{aligned}
& \square=0 \mathrm{rad} \\
& \square=\pi / 4 \mathrm{rad} \\
& \square=\pi / 2 \mathrm{rad} \\
& \square=3 \pi / 2 \mathrm{rad}
\end{aligned}
$$

1.7 Phase difference between two points on a wave

The wavelength and period define the distance and time for the wave to repeat by $2 \pi \mathrm{rad}$. The phase difference \square between any two points on a wave is found as follows.

At P_{1} the phase is
$\square_{1}=k x_{1}-\square t_{1}+\square$
At P_{2} the phase is
$\square_{2}=k x_{2}-\square t_{2}+\square$

So the phase difference $\quad \square$ is $\quad \square=\square_{2}-\square_{1}$

$$
\square=\square_{2}-\square_{1}=k\left(x_{2}-x_{1}\right)-\square\left(t_{2}-t_{1}\right)
$$

1.7 Example on Phase Difference

A harmonic wave is described by the wave function

$$
y(x, t)=0.02 \sin (0.4 x-50 t+0.8) m
$$

Find the phase diference between two points
(a) Separated in space by 0.6 m at the same time
(b) Separated in time by 0.03 s at the same point in space

So the phase difference \square is $\square=\square_{2}-\square_{1}$

$$
\square=\square_{2}-\square_{1}=k\left(x_{2}-x_{1}\right)-\square\left(t_{2}-t_{1}\right)
$$

(a) Here $x_{2}-x_{1}=0.6 m$ and $t_{1}=t_{2}$.

So $\quad \square=k\left(x_{2}-x_{1}\right)=0.4 * 0.6 \mathrm{rad} \mathrm{m}{ }^{-1} \mathrm{~m}=0.24 \mathrm{rad}$.
(b) Here $x_{2}=x_{1}$ and $t_{2}-t_{1}=0.03 \mathrm{~s}$.

So $\quad \square=-\square\left(t_{2}-t_{1}\right)=0.03 * 50 \mathrm{rad} \mathrm{s}^{-1} \mathrm{~s}=1.5 \mathrm{rad}$.

1.8 The initial phase of a wave

A harmonic wave is generally described by the wave function

$$
y(x, t)=A \sin (k x-\square t+\square)
$$

To what does \square correspond?
Let us set $x=0 \mathrm{~m}$ and $t=0 \mathrm{~s}$.

$$
y(0,0)=A \sin (\square)
$$

So \square gives the displacement of the wave at $x=0 \mathrm{~m}$ and $t=0 \mathrm{~s}$. Hence the name - initial phase.
\square does not change the sequence of the events in a wave it only makes them happen sooner or later in the sequence.

Let us consider a harmonic wave of the form
$y(x, t)=A \sin (k x-\square t+\square)$
For various values of \square

1.9 Particle motion and Harmonic Waves

- Have defined a wave as a disturbance from the equilibrium condition that propagates without the transport of matter.
- For a harmonic wave the particles oscillate in the same way as a harmonic oscillator and execute simple harmonic motion.
- Particles therefore have a
- Particle speed v_{p}
- Particle acceleration a_{p}

1.9 Particle motion and Harmonic Waves

- Let displacement be described by

$$
y(x, t)=A \sin (k x-\square t+\square) .
$$

- Particle speed $v_{p}(x, t)$

$$
v_{p}(x, t)=\frac{d y(x, t)}{d t}=\square A \cos (k x \square \square t+\square)
$$

- Here we treat $k x+\square$ as constants that are independent of time.
- Particle acceleration $a_{p}(x, t)$

$$
a_{p}(x, t)=\frac{d^{2} y(x, t)}{d t^{2}}=\square^{2} A \sin (k x \square \square t+\square)
$$

—Displacement $y(x, t)$ —Particle velocity $v p(x, t)$-Particle acceleration ap (x, t)
$v_{p}(x, t)$ is $-\pi / 2$ out of phase with $y(x, t)$ - QUADRATURE $a_{p}(x, t)$ is $-\pi$ out of phase with $y(x, t)$ - ANTIPHASE

1.9 Particle motion and Harmonic Waves

- We must take care not to confuse the wave speed and the particle speed.
- The wave speed is the speed at the wave propagates through the medium.
$-\mathrm{v}=\mathrm{f} \square=\square / k$
- The particle speed/velocity is the speed/velocity at which the particle oscillates about its equilibrium position.

$$
v_{p}(x, t)=\frac{d y(x, t)}{d t}=\square A \cos (k x \square \square t+\square)
$$

Particle speed and wave speed

- Transverse waves:- The displacement is at right angles to the direction of propagation. So the particle velocity v_{p} is at right angles to wave speed v

Direction of propagation of the wave.

Longitudinal waves:- The displacement is in the same direction as the wave propagates. So particle velocity v_{p} is parallel with the direction of wave speed.

Direction of propagation

1.9 Particle speed and acceleration

A harmonic wave is described by the wave function.

$$
y(x, t)=2.4 \times 10^{-3} \sin (36 x-270 t) m .
$$

What is
(a) the maximum particle speed and
(b) the particle acceleration at $x=4 \mathrm{~m}$ and $t=1 \mathrm{~s}$?

To start let us write the wave function in the standard form

$$
y(x, t)=A \sin (k x-\square t)
$$

For part (a): the particle velocity $v_{p}(x, t)$ is given by

$$
v_{p}(x, t)=\frac{d y(x, t)}{d t}=\frac{d(A \sin (k x \square \square t)}{d t}
$$

So the particle velocity $v_{p}(x, t)$ is given by

$$
v_{p}(x, t)=-\square A \cos (k x-\square t)
$$

Here the maximum particle speed $v_{\text {pmax }}(x, t)$ occurs when $\cos (k x-w t)=-1$.
$v_{\text {pmax }}(x, t)=\square A$
$v_{\text {pmax }}(x, t)=270 \mathrm{rad} \mathrm{s}^{-1} \mathrm{\square} 2.4 \times 10^{-3} \mathrm{~m}=0.65 \mathrm{~m} / \mathrm{s}$.

For part (b): the particle acceleration $a_{p}(x, t)$ is given by

$$
a_{p}(x, t)=\frac{d^{2} y(x, t)}{d t^{2}}=\frac{d^{2}(A \sin (k x \square \square t)}{d t^{2}}
$$

So the particle acceleration $a_{p}(x, t)$ is given by

$$
a_{p}(x, t)=-\square^{2} A \sin (k x-\square t)
$$

Here $\square=270 \mathrm{rad} \mathrm{s}^{-1}, \mathrm{k}=36 \mathrm{rad} \mathrm{m}^{-1} \mathrm{~A}=2.4 \times 10^{-3} \mathrm{~m}, \mathrm{x}=4$ m and $t=1 \mathrm{~s}$.
$a_{p}(x, t)=-\left(270 \mathrm{rad} \mathrm{s}^{-1}\right)^{2} \square 2.4 \times 10^{-3} \mathrm{~m} \cos \left(36 \mathrm{rad} \mathrm{m}^{-1} \mathrm{\square} 4 \mathrm{~m}\right.$
$-270 \mathrm{rad} \mathrm{s}^{-1} \mathrm{\square} 1 \mathrm{~s}$)
$a_{p}(x, t)=-165 \mathrm{~m} / \mathrm{s}^{2}$

1.9 Particle motion and Harmonic Waves

- A harmonic wave is described by the wavefunction

$$
y(x, t)=0.02 \sin (0.4 x-50 t+0.8) m .
$$

- Determine (a) the wave speed, (b) the particle speed at $x=1 \mathrm{~m}$ and $t=$ 0.5 s
- To solve write the wave function as $y(x, t)=A \sin (k x-\square t+\square)$
- $\mathrm{k}=0.4 \mathrm{rad} \mathrm{m}^{-1} \mathrm{H}=50 \mathrm{rad} \mathrm{s}^{-1}$
(a) Wave speed $v=\square / \mathrm{k}=50 / 0.4 \mathrm{rad} \mathrm{s}^{-1} / \mathrm{rad} \mathrm{m}^{-1}=125 \mathrm{~m} \mathrm{~s}^{-1}$
(b) Particle speed v_{p}

$$
v_{p}(x, t)=\frac{d y(x, t)}{d t}=\square \square A \cos (k x \square \square t+\square)
$$

- $\mathrm{k}=0.4 \mathrm{rad} \mathrm{m}^{-1} \mathrm{Z}=50 \mathrm{rad} \mathrm{s}^{-1} \mathrm{x}=1 \mathrm{~m}$ and $\dagger=0.5 \mathrm{~s}$
- $v_{p}(x, t)=-50^{\star} 0.02 \cos \left(0.4 \mathrm{radm}^{-1 \star} 1 \mathrm{~m}-50 \mathrm{rads}^{-1 \star} 0.5 \mathrm{~s}+0.8 \mathrm{rad}\right) \mathrm{m} \mathrm{s}^{-1}$
- $v_{p}(x, t)=0.23 \mathrm{~m} \mathrm{~s}^{-1}$

